#N Hacksaw (orthogonal sawtooth with expansion factor 9) #C Population is unbounded but does not tend to infinity. Its graph is a #C sawtooth function with ever-increasing teeth. More specifically, the #C population in generation t = 385*9^n - 189 (n>=1), is t/4 + 1079, but the #C population in generation 1155*9^n - 179 (n>=0) is only 977. #C #C The pattern consists of two parts, a stationary shotgun and a set #C of puffers moving east. The shotgun produces, and usually destroys, a salvo #C consisting of a MWSS and 2 LWSSs. The moving part consists of a period 8 #C blinker puffer (found by Bob Wainwright), and two p24 glider puffers, whose #C output gliders destroy each other (with help from an accompanying MWSS). In #C generation 385*9^n - 189 (n>=1) (and 228 for n=0), a salvo hits the back end #C of the row of blinkers, causing it to decay at 2c/3. When the row is #C completely gone, a new row starts to form and a spark is produced. The #C spark is turned into a glider by an accompanying HWSS; the glider is #C turned into a westward LWSS, in generation 1155*9^n - 127 (n>=0), by #C interaction with the glider puffers. (This 3 glider synthesis of a LWSS #C is due to David Buckingham.) When the LWSS hits the shotgun, in generation #C 2310*9^n - 184 (n>=0), another salvo is released, starting the cycle again. #C #C The idea for this sawtooth pattern was suggested by Bill Gosper. #O Dean Hickerson, dean.hickerson@yahoo.com (7/8/92) x = 199, y = 102, rule = B3/S23 17b2o$18bo$91bo$91bobo$94b2o6b2o$52b2o24bo15b2o3bo4bo$53bo23b2o15b2o3b 2o4bo$34b2o17bobo5b2o13b2o13bobo11bo9bo$33bobo18b2o5b3o11b3o13bo13bo8b 2o$23b2o7b3o12bo15b2obo9b2o26bo$23bo7b3o13b4o12bo2bo10b2o23b2o$16b3o 13b3o4bobo6b4o11b2obo11bo$15bo3bo13bobo3b2o7bo2bo9b3o$14bo5bo13b2o4bo 7b4o9b2o$15bo3bo27b4o4b2o17b2o$16b3o28bo7bobo16bo$16b3o38bo$57b2o$40b 2o9b2o64b2o$39bo2bo7bo2bo63bo$39b3o9b3o61bobo$14b3o25b9o64b2o$13b2ob2o 23bo2b5o2bo$13b2ob2o23b2o2b3o2b2o134bo$13b5o169bo$12b2o3b2o163bo4bo$ 46bo136b5o$47bo$43bo3bo12bo$44b4o13bo$56bo4bo123b2o$57b5o120b3ob2o$ 177b3o3b4o$184b2o$15bo$15b2o$67b2o115bo$66bobo116bo$9bobo40bo12b3o8b2o 101bo5bo$7bo3bo40b4o8b3o10bo102b6o$2o5bo10b2o3b2o28b4o8b3o24bo$o5bo10b obo3bo2bo15bo10bo2bo9bobo18b3ob2o3bo$7bo11bo7bo7bo6b2o9b4o10b2o18b4o4b 2o$7bo3bo15bo6b2o16b4o35b2o$9bobo15bo24bo$23bo2bo38b2o16b2o$23b2o40bo 16bobo$81b3o$81b2o79bo$84b2o77bo$83b3o71bo5bo$158b6o2$84bo$83b2o2$57bo 126b2o$56b2o122b4ob2o$45b2o8b2o11bo26bo84b6o$45bo8b3o9bobo26b2o84b4o 12bo$55b2o8bobo12bo54b5o58bo$56b2o2b2o2bo2bo11b2o14bo38bo4bo54bo3bo$ 57bo2bo4bobo26bobo42bo55b4o$66bobo25bo2bo40bo20b4o27b3o$68bo26bo2bo59b o3bo25b2ob2o$162bo21b3o3b3o$95bo65bo33b4o$95b2o97bo3bo$172b2o24bo$171b 4o22bo$171b2ob2o$66b2o105b2o6b6o$65b3o27bo73bo10bo5bo$55b2o5bob2o12bo 15b2o71bobo16bo$55bo6bo2bo12b2o29b2o58bo15bo$62bob2o13b2o27bo64b2o$65b 3o11b3o11bo13bo9b2o52b2ob2o$66b2o11b2o10bobo13bo10bo17b2o33b4o$78b2o9b 2o16bo27bo2bo33b2o$78bo10b2o17bo29bo$89b2o18b2o27bo22b6o$91bobo41b2obo 21bo5bo$93bo42bo29bo$149b2obo2bo9bo$148b2o6bo$137bo12bobo3bo$136b2o15b 4o4$168bo$137bo29b2o$137b2o12bo14b2o8b2o$125bo23bobo13b3o9bo$125bobo 20bobo15b2o$114b2o12b2o9b2o6bo2bo16b2o$114bo13b2o9bo8bobo17bo$128b2o6b 2o6b2o3bobo$125bobo7b3o7bo5bo$125bo10b2o$139bo$139b2o!